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Classical and Quantum Algebraic Screening in a
Coulomb Plasma near a Wall: A Solvable Model
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The static position correlation in a quantum Coulomb plasma near a wall is
studied by means of a model where two quantum charges are embedded in a
classical plasma at equilibrium. Three kinds of walls are considered: a wall
without electrostatic properties, a dielectric, and an ideal conductor. At large
separations y along the wall, the correlation exactly decays as 1�y3, though no
algebraic tail exists for classical charges near an ideal conductor. This tail
originates from thermal statistical and purely quantum fluctuations of polariza-
tion clouds which are deformed by the geometric constraint due to the wall and
by the charges induced by influence inside a wall with electrical properties. The
coefficient of the 1�y3 tail can be calculated explicitly in a weak-coupling and
low-delocalization regime. Then classical, diffraction, and purely quantum con-
tributions are disentangled.

KEY WORDS: Coulomb systems; quantum screening; surface correlations;
solvable model.

1. INTRODUCTION

1.1. The Issue at Stake

At the scale of condensed matter physics, the sole relevant interaction
between fundamental particles (such as electrons, nuclei, atoms, or ions) is
the electrostatic interaction. The Coulomb potential vC(r, r$) created at r$
by a unit point charge located at r is the solution of the Poisson equation,

2r$ vC(r, r$)=&4?$(r&r$) (1.1)
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Equation (1.1) is written in Gauss units in three dimensions. The expres-
sion of the long-ranged potential vC(r, r$) depends on the boundary condi-
tions for the domain in which the charges are allowed to move. For
instance, in the bulk of the system, the microscopic pair potential is merely
the value of the Coulomb potential between two unit charges in the vacuum,

vCbulk(r, r$)=
1

|r&r$|
(1.2)

However, vC(r, r$) takes a different form in the vicinity of a wall with elec-
trical properties. These are characterized by the dielectric constant =W of
the wall material. However, some strong screening, one of the most
fundamental properties in Coulomb plasmas at equilibrium, arises for any
particular solution of Eq. (1.1), namely for any boundary conditions, as
exemplified below.

More precisely, apart from screening effects originating from the long
range of the interaction between elementary charges��such as the absence
of any volumic charge required for the stability of a macroscopic system��
some features of microscopic screening, such as the large-distance behavior
of correlations, are specific to the fact that vC(r, r$) is the solution of
Eq. (1.1). In the bulk, the specificity is very clear. When particles obey
classical dynamics, correlations fall off exponentially fast at large distances
|r&r$| in the Coulomb, (1) whereas they behave only algebraically for any
other generic nonintegrable force.(2) When quantum dynamics is taken into
account (with either Maxwell�Boltzmann(3) or Fermi�Bose(4) statistics),
Coulomb screening becomes algebraic; nevertheless, the 1�|r&r$|6 power
law of the correlation decay is faster than it would be if the potential were
not harmonic (see Section III B of ref. 4).

In the vicinity of a wall, the specificity with respect to other long-
ranged potentials is partially canceled by the breakdown of rotational
invariance. In the classical regime, the static position correlation at large
distances when particles remain near the wall at fixed distances x and x$
decays as

fcl(x, x$; =W)
y3 when =W is finite (1.3)

In Eq. (1.3) y is the norm of the projection of r&r$ in the plane parallel to
the wall. The interpretation is that there is still internal screening��namely,
the global charge of a particle and its polarization cloud vanishes after
statistical averaging��but in the vicinity of the wall the mean dipole carried
by a charge and its polarization cloud does not vanish in the direction
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perpendicular to the boundary; subsequently effective dipole�dipole inter-
actions appear. On the contrary, when the wall is an ideal conductor
(=W=�), the correlation along the wall falls off faster than any inverse
power law. The reason is that some ``perfect'' influence phenomenon inside
the wall balances the loss of rotational symmetry inside the plasma.(5)

In the quantum regime, when =W is finite, the surface�charge correlation,
namely the charge correlation after integration over the distances x and x$
from the wall, also decays as 1�y3 in the special case of a One-Component
Plasma (OCP) where one species of moving charges is embedded in a rigid
neutralizing background. According to ref. 6, this is a consequence of the
fluctuation-dissipation theorem and the assumption that the charge
induced in the plasma by an infinitesimal time-dependent external charge
uniformally spread on the wall surface is localized over a microscopic scale
from the wall. As for the particle-particle correlation (without integration
over x or x$), it is also expected to decrease as 1�y3. Indeed, on one hand,
internal screening also works in a quantum plasma so that effective interac-
tions decrease as or faster than 1�y3. On the other hand, quantum screen-
ing is less efficient than the classical one��because of intrinsic quantum
fluctuations of position for any particle��so that the quantum correlation
should decay as or more slowly than 1�y3.

In short, at equilibrium, the various behaviors of static position
correlations at large distances when particles remain in the vicinity of the
wall mainly depend on three properties:

(I) the electrostatic response of the wall, which determines the form
of the microscopic potential vC(r, r$) through its dependence upon the
dielectric constant =W of the wall,

(II) the classical or quantum nature of thermal fluctuations,

(III) the geometrical constraints imposed to those fluctuations near
the wall.

The aim of the present paper is to investigate how these effects inter-
play in the quantum regime by means of a simple solvable model: two
external quantum charges embedded in a classical plasma at thermal equi-
librium in the vicinity of a wall. (The classical bath may contain a rigid
electrical background). We consider three kinds of walls: a wall without
any electrostatic property (=W=1), a dielectric material (0<=W<1 or
1<=W<�) and an ideal conductor (=W=�). These walls carry no exter-
nal charge (but contain internal polarization charge when =W{1). The
model in the case of two quantum charges in the bulk was first introduced
by Alastuey and Martin(3) in order to exhibit the origin of intrinsically
algebraic quantum screening in the plasma bulk. This origin is conveniently
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dealt with by using the Feynman�Kac path integral representation of the
quantum Gibbs factor. Indeed, the random paths of the formulation are a
proper way for describing the consequences of quantum fluctuations upon
large-distance quantities.

1.2. Results

The first interest of our statistical mechanical model is that it is exactly
solvable. The result of the calculation is that, at the inverse temperature
;#1�kBT, where kB is Boltzmann constant, the effective interaction
8ext

:1 :2
(x1 , x2 , y) between two external quantum charges (of species :1 and :2)

embedded in a classical plasma decays as 1�y3 along the wall,

&;8ext
:1:2

(x1 , x2 , y)ty � �
f (x1 , x2 ; =W)

y3 (1.4)

Equation (1.4) is valid for any value of =W (=W=� included) and for all
values of the parameters temperature T and densities \j of the various
species j in the classical plasma in a fluid phase.

A second interest of the model is that it is expected to capture the
main features of a fully quantum system in a regime where exchange effects
are negligible, while some intricate details of the quantum many-body
problem, which are not crucial for screening phenomenon, are avoided.(7)

From this point of view, the result of the model strengthens the conjecture
of Section 1.1 based on general arguments: in a quantum plasma the static
Ursell function, defined as minus 1 plus the probability of finding a particle
at r$ when there is a particle at r, also has a

fqu(x, x$; =W)

y3 (1.5)

tail for any value of =W and even in the whole fluid phase (i.e. in a wide
range of temperature and densities). This tail is the superposition of a
quasi�electrostatic and geometric effect fqu, elect(x, x$; =W)�y3, which also
arises in the classical regime except when the wall is an ideal conductor,
and of a purely quantum contribution fqu, |(x, x$; =W)�y3, which exists for
any value of =W ,

fqu(x, x$; =W)= fqu, elect(x, x$; =W)+ fqu, |(x, x$; =W) (1.6)

with

fqu, elect(x, x$; =W=�)=0 (1.7)
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Third, the model provides a picture of the profile amplitude
fqu(x, x$; =W) for the expected 1�y3 tail of the Ursell function in the fully
quantum problem. Indeed, the general expression of the f (x1 , x2 , =W)�y3

tail in the model can be made explicit in a regime where the Coulomb
coupling is weak and the quantum charges are slightly delocalized. In this
double limit, the electrostatic contribution felect(x1 , x2 ; =W) in the model
appears as the sum of a classical contribution plus a ``diffraction'' correc-
tion due to quantum dynamics. Hereafter, the term diffraction will refer to
effects which are only corrections to the classical behavior and arise from the
wave nature of quantum dynamics. We infer that similarly in the quantum
many-body problem fqu, elect(x, x$; =W) decreases at least faster than any
inverse power-law over a distance ! from the wall, where the Debye length
! of the quantum plasma is the length scale for classical Coulomb screening,

!#
1

- 4?; �# \#e2
#

(1.8)

(In Eq. (1.8) e# (\#) is the charge (density) of moving species #). On the
contrary, from the study of the profile fqu, |(x1 , x2 ; =W) in the model, we
expect that the purely quantum contribution fqu, |(x, x$; =W) is concen-
trated over a density-independent scale * from the wall, * being the order
of magnitude of the thermal de Broglie wavelengths *# ,

*##- ;�2�m# (1.9)

In Eq. (1.9) � is Planck constant and m# is the mass of species #. The ``elec-
trostatic'' part of the effective A�y3 interaction between species # and #$ per unit
area is equal to (&1�;) times ��

0 dx ��
0 dx$\#(x) \#$(x$) fqu, elect(x, x$; =W)�y3.

The order of magnitude of its coefficient is equal to its classical value
1�(;2e#e#$) when =W is finite. On the other hand, fqu, |(x, x$; =W) starts at
order *2 B �2, because * is the amplitude of the quantum position fluctua-
tions confined by the wall and which generates fqu, |(x, x$; =W). The
amplitude of the corresponding part in the 1�y3 effective interaction
between surface charges (after integration over x and x$) is expected to be
of order [1�(;2e#e#$)]_(*�!)4, because fqu, | is localized inside the plasma
over a width of order *.

We notice that fqu, |(x, x$; =W)�y3 may be interpreted as &; times a
repulsive potential.

The paper is organized as follows. The formal resolution presented in
Section 2 is valid for various situations (in the bulk, or near a boundary,
or��with a slight alteration��in the presence of a uniform magnetic
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field(8)). The details are recalled in order to introduce the notations. In
Section 3 an explicit formula for the electrostatic interaction between the
random paths introduced by the Feynman�Kac representation is given in
the weak-coupling regime. The latter is reached when

a<<!B (1.10)

where a is the mean distance between particles in the classical plasma and
between those and the external charges, while !B is the Debye length of the
classical bath

!B#
1

- 4?; � j \ jQ2
j

(1.11)

(In Eq. (1.11) the sum runs over the species of moving particles in the
classical bath, each of which has a density \j and a charge Qj .) Moreover
(Section 4.1), the path integrals may be performed explicitly in the low-
delocalization limit. The latter is define as the regime where the averaged
extent *i of position fluctuations for each quantum particle is negligible
compared with the screening length of the classical plasma,

*i<<!B (1.12)

We get the exact value of f|(x1 , x2 ; =W=�) in the double limit (1.10) and
(1.12). The leading term is of order �2. When =W is finite, the electrostatic
contribution felect(x1 , x2 ; =W) can be calculated up to order �2 in the more
restricted regime a<<*i<<!B (Section 4.2). Thus a quantitative com-
parison between the 1�y3 tails from various origins is allowed (Section 4.3).
Section 5 is devoted to an attempt for the description of the correlation in
a quantum OCP in the vicinity of an ideally conducting wall. In this case
a phenomenological model for the fully quantum system in the low-density
regime is introduced from the result of the solvable model. The low-density
regime corresponds to a low-degeneracy and weak-coupling limit,

*<<a<<! (1.13)

Then 1�y3 tail for the phenomenological quantum correlation when =W=
� becomes larger than the exponentially-decaying classical term only at
distances of order ten !. As a conclusion (Section 6), the behavior of static
position correlations may be interpreted in terms of effective dipole�dipole
interactions between the global entities made by any charge and its fluc-
tuating polarization cloud.
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2. THE GENERAL MODEL

2.1. Definitions

We consider two quantum point charges of species :i characterized by
their charges ei and their masses mi and which are embedded in a classical
plasma. The latter may be made of several species of point charges and a
possible uniform rigid electrostatic background. The masses of classical
particles do not appear in the static equilibrium averages. Their charges are
of the same order of magnitude as those of the two quantum particles.
A wall with dielectric constant =W confines all particles to the semi-infinite
three-dimensional domain x>0.

The Coulomb potential vCW between two charges in the vicinity of the
wall is the solution of the Poisson Eq. (1.1) with the following boundary
conditions. In all cases vCW vanishes when x goes to \� while vCW and
the normal component of the electric displacement = %vCW are continuous
across the boundary plane x=0. (When =W=�, the latter condition
means that vCW vanishes inside the ideally conductive wall.) The solution
may be written in one and the same form, for any value of =W (even for
=W=�),

vCW (r1 , r2)=
1

|r1&r2 |
+

1&=W

1+=W

1
|r1&r2* |

for x1>0 and x2>0

(2.1)

In Eq. (2.1) r*=(&x, y, z) is the image of r=(x, y, z) with respect to the
plane x=0. In the case =W=1, vCW (r1 , R2) is reduced to its bulk (or
vacuum) value (1.2): the wall has no electrostatic property. Such a wall is
often called a ``plain'' hard wall in the literature. When =W{1, vCW may be
interpreted as the sum of its bulk value vCbulk plus the contribution from
an ``image''. The image of a unit charge at r is a particle carrying a charge
(1&=W)�(1+=W) and located at r*. The image charge has the same effect
as the charges which appear by influence inside the wall in the presence of
a charge outside the wall.

In the classical system, a short-ranged repulsive potential vSR must be
introduced in order to prevent the two-body collapse between classical
charges with opposite signs. [In the quantum case the collapse is avoided
by the uncertainty principle.] The collapsing particles may be either true
particles or, when =W>1 (=W<1), they may be a charge at R1 and the
image at R2* of another charge with the same (opposite) sign. Both situa-
tions arise in a multicomponent plasma made of moving charges of both
signs, while only the second kind of ``dangerous'' attraction appears in the

179Quantum Screening in a Coulomb Plasma



case of a One-Component Plasma. We recall that the latter system is made
of one species of moving charges e and a continuous rigid neutralizing
background whose uniform charge density is exactly opposite to the mean
bulk charge density of moving charges. (vSR can be suppressed only in the
case of a One-Component plasma near a plain wall or when =W<1.) The
short-distance repulsion vSR ensures that the thermodynamical quantities
are well-defined, while it has no effect on large-distance screening proper-
ties which are entirely ruled by vCW .

The sum of all interactions when the two quantum particles are at r1

and r2 and the classical charges are in the position configuration C is
UW (x1)+UW (x2)+Utot(r1 , r2 , C) where UW (x) is a repulsive potential
describing an infinitely steep wall,

exp[&;UW (x)]={1 if x>0
0 if x<0

(2.2)

Utot(r1 , r2 , C) may be decomposed into

Utot(r1 , r2 , C)=e1 e2vCW (r1 , r2)+ :
i=1, 2

V i (ri , C)+U0(C) (2.3)

where Vi is the interaction between each quantum particle with index i and
the plasma,

Vi (ri , C)#ei | dr vCW (ri , r) Q(r) (2.4)

while U0 is the energy of the classical plasma in the absence of any quan-
tum charge

U0(C)#| dr UW (x) \(r)+ 1
2 | dr | dr$ Q(r)[vCW (r, r$)+vSR(r, r$)] Q(r$)

(2.5)

In the above definitions \(r) (Q(r)) is the particle (charge) density
operator, \(r)#�j $(r&rj ) and

Q(r)#:
j

Q j$(r&Rj )+QB(x) (2.6)

where Rj (Qj ) is the position (charge) of the classical particle indexed by
j and QB(x) is the charge density of the possible uniform background in the
half-space x>0.
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The effective interaction 8ext
:1:2

(r1 , r2) between the two quantum par-
ticles is defined from the immersion free energies F (1)

:i
(ri ) (or F (2)

:1:2
(r1 , r2))

of one (or two) particle(s) in the classical plasma through

8ext
:1:2

(r1 , r2)#F (2)
:1:2

(r1 , r2)&F (1)
:1

(r1)&F (1)
:2

(r2) (2.7)

The free energies are calculated from statistical averages of the correspond-
ing Gibbs factors, where the averages are performed over the states of the
classical plasma. These thermal averages are denoted by ( } } } )U0

. Indeed,
when dynamics is classical, the contributions to the Gibbs factor from the
kinetic and potential parts of the Hamiltonian factorize; then the thermal
average (A) U0

of an observable A which does not depend on the momenta
of classical particles involves only U0 in any statistical (canonical or grand
canonical) ensemble. For instance in the canonical ensemble

(A) U0
#

� dC A exp[&;U0(C)]
� dC exp[&;U0(C)]

(2.8)

where � dC denotes an integration over the position configurations C of
plasma particles. If p̂1 and p̂2 denote the momentum operators of the two
quantum particles, the free energies are defined respectively through

e&;F:i
(1)(ri)=�(ri | exp {&; _ p̂2

i

2mi
+UW (x̂ i )+Vi (r̂ i , C)&= |ri)�U0

(2.9)

and

e&;F (2)
:1 :2

(r1 , r2)=�(r1 r2 | exp {&; _ p̂2
1

2m1

+
p̂2

2

2m2

+UW (x̂1)+UW (x̂2)

+e1e2vCW (r̂1 , r̂2)+ :
i=1, 2

Vi ( r̂i , C)&= |r1r2)�U0

(2.10)

(We do not take into account the exchange matrix-element for the Gibbs
factor, because it is expected to decay faster than the direct matrix-element
when |r1&r2 | goes to infinity and we are interested only in large |r1&r2 |
effects.) We already notice that symmetry arguments imply that
8ext

:1 :2
(r1 , r2)=8ext

:1:2
(x1 , x2 , y), with the notations of the Introduction.

2.2. Formal Resolution

2.2.1. Feynman�Kac Formula. The matrix elements of the
quantum Gibbs factor may be expressed as some kinds of classical Gibbs
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factors by using the Feynman�Kac formula. The difficulty originating from
the non commutativity of the position and momentum operators is then
replaced by the task of integrating over Brownian paths. Let us introduce
the Brownian dimensionless bridges !i (s) where s is a dimensionless
abscissa with 0�s�1; !i (s=0)=!i (s=1)=0. Then the Feynman�Kac
formula reads(9)

(r1r2 | exp {&; _ p̂2
1

2m1

+
p̂2

2

2m2

+UW (x̂1)+UW (x̂2)+Utot(r̂1 , r̂2 , C)&= |r1r2)

=
1

(2?*2
1)3�2

1
(2?*2

2)3�2 | D0
W (!1 ; x1) | D0

W (!2 ; x2)

_exp _&; |
1

0
ds Utot(r1+*1!1(s), r2+*2 !2(s), C)& (2.11)

In (2.11) the de Broglie wavelength *i#� - ;�mi measures the amplitude
of quantum position fluctuations at inverse temperature ;. The potential
UW (x), which describes the impenetrability of the wall, is entirely taken
into account in the measure D0

W (!; x) for a dimensionless Brownian bridge
confined to a semi-infinite space and with its origin r at a distance x from
the wall.

Explicit results may be obtained with the measure D0
W (!; x). For

instance, according to the one-body analog of (2.11), this measure is nor-
malized by

1
(2?*2

i )3�2 | D0
W (!i ; xi )#(ri | exp {&; _ p̂2

i

2mi
+UW (x̂i )&= | ri) (2.12)

The free thermal propagator (r$| exp[&;[p̂2
i �(2mi )+UW (x i )]] |r) is the

product of three one-dimensional free propagators. In the direction x
perpendicular to the wall, the propagator is

g0, W (x, x$; s)#(x| exp[&;s [h� 0+UW (x̂)]] |x$)

=%(x) %(x$)
1

(2?*2)1�2

_[exp[&|x&x$|2�2*2s]&exp[&|x+x$|2�2*2s]] (2.13)

where (x| ;h� 0#&(*2�2) �2�(�x)2 and %(x) is the Heaviside function
defined as %(x)=0 if x<0, %(x=0)=1�2 and %(x)=1 if x>0.
g0, W (x, x$; s) vanishes when x or x$ tends to zero, in agreement with the
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fact that the probability amplitude of finding a particle in an impenetrable
wall vanishes. With the latter notation, (2.12) is reduced to

1
(2?*2

i )3�2 | D0
W (!i ; x i )=

1
(2?*2

i )
g0, W (x i , xi ; s=1)

=
1

(2?*2
i )3�2 %(x i )[1&e&2xi

2�*i
2
] (2.14)

We notice that the set of Brownian bridges originating at x has a vanishing
measure as x comes close to the wall. The first and second moments
� D0

W (!i ; x i )[!(s)]x and � D0
W (! i ; xi )[!(s)]2

x also tend to zero as x2
i in the

same limit, as it can be checked in the formulae given below.

2.2.2. Difference with Electrostatic Free Energies. In the
case of the one-body matrix element of the Gibbs factor involved in (2.9),
a Feynman�Kac formula similar to (2.11) allows one to get an expression
only in terms of some electrostatic interaction. Indeed, let us define

qi (r)#ei |
1

0
ds $(r&ri&*i!i (s)) (2.15)

qi (r) is a charge distribution uniformally spread over a wire with the same
shape as the Brownian bridge *i !i with its origin at ri . The contribution
from Vi (ri , C) to the path integral may be written as the electrostatic
energy between the charge distribution qi (r) and the configuration C of the
classical plasma,

|
1

0
ds Vi (ri+*i !i (s), C)=| dr | dr$ qi (r) vCW (r, r$) Q(r$)#V[q i] (2.16)

Henceforth the immersion free energy F (1)
:i

(ri ) of one quantum particle is
related to the corresponding free energy F (1)

elect[qi] for a classical extended
wire which interacts with the classical plasma through the electrostatic
interaction. The relation is

e&;F (1)
:i

(ri)=
1

(2?*2
i )3�2 | D0

W (! i ; xi ) e&;F (1)
elect[qi] (2.17)

with

e&;F (1)
elect[qi]#(e&;V[qi]) U0

(2.18)

where ( ) U0
and V[q i] are defined in (2.8) and (2.16) respectively.
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However, the term �1
0 ds vCW (r1+*1 !1(s), r2+*2!2(s)), which is

associated with the direct interaction between the two quantum particles by
the Feynman�Kac representation (2.10) of the two-body matrix-element of
the quantum Gibbs factor, cannot be reduced to an electrostatic energy
such as � dr � dr$ q1(r) vCW (r, r$) q2(r$). There appears an extra purely
quantum term, which is independent from the classical plasma,

|:1:2
[r1+*1 !1 , r2+*2!2]#e1e2 |

1

0
ds1 |

1

0
ds2[$(s1&s2)&1]

_vCW (r1+*1!1(s1), r2+*2!2(s2)) (2.19)

The immersion free energy of the two quantum charges is expressed in terms
of both the corresponding electrostatic free energy F (2)

elect[q1 , q2] for two
charge distributions q1(r) and q2(r) plus the quantum contribution |:1:2

,

e&;F (2)
:1 :2

(r1 , r2)=
1

(2?*2
1)3�2

1
(2?*2

2)3�2 | D0
W (!1 ; x1) | D0

W (!2 ; x2)

_exp[&;[F (2)
elect[q1 , q2]+|:1:2

[r1+*1!1 , r2+*2 !2]]]

(2.20)

with

e&;F (2)
elect[q1 , q2]=exp _&; | dr | dr$ q1(r) vCW (r, r$) q2(r$)&

_(exp[&;[V[q1]+V[q2]]]) U0
(2.21)

Eventually, from the previous definitions, the effective potential
8ext

:1 :2
(r1 , r2) between two quantum particles introduced in (2.7) is related to

an effective electrostatic potential

8elect[q1 , q2]#F (2)
elect[q1 , q2]& :

i=1, 2

F (1)
elect[qi] (2.22)

between wires with random shapes plus a quantum contribution which is
entirely independent from the classical plasma. Symmetry arguments imply
that the immersion free energy F (1)

elect[qi] depends only on the distance xi

from the wall and on the shape !i . 8elect[q1 , q2] appears if we introduce
the measure with unit normalization, � D� W (!i ; xi )=1,

D� W (!i ; xi )#
e&;F (1)

elect[qi]

� D0
W (! i ; xi ) e&;F (1)

elect[qi]
D0

W (!i ; xi ) (2.23)
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According to (2.20) and (2.22) we get

exp[&;8ext
:1:2

(x1 , x2 ; y)]&1

=| D� W (!1 ; x1) | D� W (!2 ; x2)

_[exp[&;[8elect[q1 , q2]+|:1:2
(r1+*1!1 , r2+*2 !2)]]&1]

(2.24)

2.3. Origin of Algebraic Screening at Large Distances

According to known results about the classical regime for point par-
ticles, if =W is finite, 8elect[q1 , q2] is expected to behave as 1�y3 when y
goes to infinity, whereas, if =W is infinite, 8elect[q1 , q2] decays faster than
any inverse power law even along the wall.(5) The 1�y3 fall-off for =W finite
is inferred from the following sum rule for point charges, (10)

|
�

0
dx |

�

0
dx$[(Q(r) Q(r$)) U0

&(Q(r))(Q(r$)) U0
]

t|y1&y2 | � � &
=W

8?2;
1
y3 (2.25)

with the same notations as in Eq. (1.3). Equation (2.25) is derived by use
of the linear response theory from the assumption that an infinitesimal
external static charge spread on the wall surface is completely screened by
a classical plasma in the limit where the spatial variations of the external
charge are infinitely smooth. This sum rule does not depend on the choice
of the short-distance regularization vSR , because it only arises from the
long range of the potential. The 1�y3 behavior of 8elect[q1 , q2] should
remain valid after integration over the Brownian bridges ! with the
measure (2.23),

&; | D� W (!1 ; x1) | D� W (!2 ; x2) 8elect[q1 , q2]

ty � �

felect(x1 , x2 ; =W)
y3 if =W is finite (2.26)

Indeed, the Brownian bridge *i!i is confined to some finite area by the
Gaussian weight involved in the Wiener measure D0

W (!1 ; xi ), while
F (1)

elect[qi] vanishes far away from the distribution qi . However, in the
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vicinity of an ideally conducting wall, the clustering is expected to be
exponentially fast in all directions. In the following, we will recover that
this is indeed the case in the weak-coupling limit.

Furthermore, for any kind of wall, the purely quantum term |:1:2
also

generates a 1�y3 tail when y goes to infinity, while x1 and x2 are kept fixed.
On one hand, |:1:2

decays at least as 1�r3 in all directions. The reason is
that the property

|
1

0
ds1 |

1

0
ds2[$(s1&s2)&1] f (s1)=0 (2.27)

which is satisfied by any function f, ensures that in a large-distance Taylor
expansion (namely for y>>x1 , y>>x2 and y>>*i |!i | ) only terms with at
least one !1(s1) and one !2(s2) are not equal to zero. On the other hand,
translation invariance is broken along the x axis so that � D� W (!i ; x i )[! i]x

{0 whereas the corresponding averages in the directions parallel to the
wall vanish. According to the value of �2vCW (x1 , x2 , y)��x1 �x2 |x1=x2=0 ,
for any value of =W ,

&; | D� W (!1 ; x1) | D� W (!2 ; x2) |:1:2
[r1+*1!1 , r2+*2 !2]

ty � �

f|(x1 , x2 ; =W)
y3 (2.28)

with

f|(x1 , x2 ; =W)=&
2=W

1+=W
;e1e2*1*2 A \x1

*1

,
x2

*2 + (2.29)

and

A \x1

*1

,
x2

*2 +=|
1

0
ds1 |

1

0
ds2[$(s1&s2)&1] | D� W (!1 ; x1)[!1(s1)]x

_| D� W (!2 ; x2)[!2(s2)]x (2.30)

The expression (2.29) is also valid in the limit where =W becomes infinite.
The conclusion of the previous general arguments is that 8ext

:1:2
decays

as 1�y3, whatever the electrical properties of the wall are, except that the
tail is from purely quantum origin in the case =W=�. More precisely, the
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1�y3 tail may be decomposed into two contributions: according to (2.24),
(2.26), and (2.28).

&;8ext
:1:2

(x1 , x2 , y)ty � �

f|(x1 , x2 ; =W)+ felect(x1 , x2 ; =W)
y3 (2.31)

where felect(x1 , x2 ; =W) contains the classical tail and its ``diffraction''
corrections due to quantum dynamics, while f|(x1 , x2 ; =W) is proportional
to �2 and vanishes in the strict classical limit.

In order to obtain more explicit results, we shall consider a particular
regime where two parameters are small. First, a limit of weak coupling
(1.10) between all charges will allow us to calculate 8elect . Afterwards, we
will consider a subdomain of the weak-coupling regime where the quantum
dynamical effects are not too strong in the sense that *i<<!B . Under this
second assumption, the weight D� W (!i ; xi ), which involves the electrostatic
immersion free energy of qi (r), is reduced to the normalized measure
D� 0

W (!i ; xi ) for free particles, and the averages giving felect(x1 , x2 ; =W) and
f|(x1 , x2 ; =W) can be calculated up to second order in the parameter *i �!B

in some special regime.

3. WEAK-COUPLING LIMIT

For the sake of simplicity, the classical plasma is chosen to be a One-
component Plasma in the following. (All results are also true for a multi-
component plasma and are merely written with a larger number of
indexes.) Every moving particle carries a charge e. At equilibrium, the par-
ticle density in the bulk is denoted by \. According to the local neutrality
relation (Qbulk(r)) U0

=0, which is always satisfied far from the wall, (11) the
charge density of the rigid background is equal to &e\. For a given den-
sity \, the difference between the classical OCP and an ideal gas is entirely
characterized by the coupling constant

1#
;e2

a
B \ a

!B+
2

(3.1)

where a and !B are defined in Eqs. (1.10) and (1.11), so that
!B=1�- 4?;\e2.

3.1. Electrostatic Energies in the Debye Self-Consistent
Approximation

We just sum up the mainlines of the calculation while some details are
given in Appendix A. By use of an expansion in qi up to second order, the
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immersion free energies defined in Eqs. (2.18) and (2.21) are expressed in
terms of both the charge density

(Q(r)) U0
=e[\(x)&\] (3.2)

and the charge-charge correlation function (Q(r) Q(r$)) U0
&(Q(r)) U0

(Q(r$)) U0
in the classical plasma in the absence of the two quantum

charges. In the vicinity of any wall the total density of moving species in
a multicomponent plasma is not uniform. Indeed, on one hand, the force
per unit surface exerted by the wall on the fluid is opposite to the kinetic
pressure \(x=0) kBT determined by the total density \(x=0) of moving
particles on the wall. On the other hand, this force must be balanced by the
bulk pressure on the other side of a fluid slab between the plane x=0 and
a parallel plane at x very large. Since the bulk pressure in the presence of
interactions is not equal to its value \kBT in an ideal gas, \(x=0){\ and
there must be a nonuniform density profile \(x). The result is also valid in
the case of the OCP, though there is an extra electrostatic contribution
from the background to the thermodynamical bulk pressure, because the
latter is defined in such a way that the system remains neutral when its
volume is varied.(12) Thus, it is convenient to express the charge-charge
correlation function for the classical plasma in terms of the Ursell function
hcl, W (r, r$),

(Q(r) Q(r$)) U0
&(Q(r)) U0

(Q(r$)) U0

=e2[\(x) \(x$) hcl, W (r, r$)+\(x) $(r&r$)] (3.3)

The mean-field approximation may be introduced by the same scheme
as in the bulk. Let e,W (r, r$) be the total potential created at r$ by a charge
e located at r and by its polarization cloud. The charge density of this
cloud at r" is the excess charge ehcl, W (r, r") \(x") with respect to the mean
charge density e[\(x")&\] and

e,W (r, r$)#evCW (r, r$)+| dr" hcl, W (r, r") e\(x") vCW (r", r$) (3.4)

[vSR is not involved in ,W , because in the following the latter is only aimed
to describe correlations at length scales that are larger than the mean inter-
particle distance a; however, vSR should be included in the description of
thermodynamic quantities such as the profile density \(x) (see Sec-
tion 2.1.)]. The self-consistent mean-field approximation amounts to
replacing hcl, W in Eq. (3.4) by

hcl, MFW (r, r$)#&;e2,MFW (r, r$) (3.5)
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Thus the mean-field total potential ,MFW (r, r$) is the solution of the
integral equation derived from the combination of Eqs. (3.4) and (3.5),

,MFW (r, r$)=vCW (r, r$)&;e2 | d r" \(x") ,MFW (r, r") vCW (r", r$) (3.6)

The combination of Eq. (3.6) with the Poisson Eq. (1.1) satisfied by
vCW (with the corresponding boundary conditions) shows that ,MFW (r, r$)
in the case of the Coulomb potential is the solution of the linearized
Poisson�Boltzmann equation

2r$ ,MFW (r, r$)&}2(x$) ,MFW (r, r$)=&4?$(r&r$) for x$>0 (3.7)

with

}(x$)#- 4?;\(x$) e2 (3.8)

,MFW obeys the same boundary conditions as vCW , because it is also an elec-
trostatic potential. Since vCW (r, r$)=vCW (r$, r), according to Appendix A,
the Coulomb mean-field free energy takes the general form

F (1)
elect, W[qi]=| dr | dr$ q i (r) vCW (r, r$) e[\(x$)&\]

+F (1)
elect, MFW [qi]+O(q3

i ) (3.9)

where O(q3
i ) denotes a term of order q3

i and the contribution of order q2
i

reads

F (1)
elect, MFW [qi]# 1

2 | dr | dr$ qi (r)[,MFW (r, r$)&vCW (r, r$)] q i (r$) (3.10)

At the lowest order in q, the mean-field value of 8elect[q1 , q2] defined in
Eq. (2.22) is

8elect, MFW[q1 , q2]=| dr | dr$ q1(r) ,MFW (r, r$) q2(r$) (3.11)

An extra assumption can be performed in the weak-coupling limit
1<<1 of the coulombic mean-field approximation:(13) the profile density
\(x) is replaced by its uniform bulk value \ in the whole half-space
occupied by the plasma. The corresponding expression of ,MFW will be
called the Debye value ,DW in the following. ,DW is the exact value of
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,MFW at leading order in 1 and the correction to ,DW arising from the
nonuniformity of the profile density is of order 1 3�2_[,DW (r, r$)&
vCW (r, r$)]. Indeed, according to Eq. (3.6), ,MFW&,DW is of order
&;e2 � dx"[\(x")&\] ,DW (r, r") vCW (r", r) where ,DW satisfies Eq. (3.6)
with \(x") replaced by \, while the relative correction [\(x)&\]�\ derived
from ,DW through the BGY equation proves to be only of order 1 3�2, (13)

\(x)&\=\_O(1 3�2) (3.12)

(The latter result can also be readily inferred from the balance between the
kinetic energy and the bulk pressure, whose Debye value differs from \kBT
only through a term proportional to (1�!B)3 B \1 3�2 (see Eq. (3.1)).) Half
integer-powers in the coupling constant 1 arise from screening collective
effects.

At the lowest order in 1, only the second term in the r.h.s. of Eq. (3.9)
with ,MFW replaced by ,DW contributes to the immersion free energy. Indeed,
Eq. (3.9) arises from Eq. (A1) and, according to Eq. (A4), (Q ind

D (r))U0
=

qi_O(\1 ) whereas, according to Eq. (3.12), the charge density associated
with \(x)&\ by Eq. (3.2) is (Q(x)) U0

=e_O(\1 3�2). As a consequence

F (1)
elect, W [qi]=F (1)

elect, DW [qi]_[1+O(1 1�2)] (3.13)

where the term of order 1 1�2 arises from coupling effects, in particular
from the correction to the homogeneous density profile that are induced
by Coulomb interactions. Besides, since the relative correction to ,DW

arising from the nonuniformity of the profile density is of order 1 3�2 (see
previous paragraph), the corresponding correction to 8elect, MFW[q1 , q2]&
8elect, DW [q1 , q2] is of relative order O(1 3�2). However, we do not know
the order of the corrections which go beyond the mean-field approximation
and we can only state that

8elect, W[q1 , q2]=8elect, DW[q1 , q2]_[1+O(1 1�2)] (3.14)

The Debye potential ,DW can be explicitly calculated as the solution
of Eq. (3.7) where }(x$) is replaced by }=- 4?;\e2=1�!B . As in the case
of vCW (see Eq. (2.1)), ,DW may be written in a single form for any value
of the dielectric constant =W of the wall.(14) ,DW appears as the sum of the
solution ,Dbulk in the bulk

,Dbulk( |r1&r2 | )=
e&} |r1&r2|

|r1&r2 |
(3.15)
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plus a correction which, by itself, takes into account the presence of the
wall. Indeed, because of translational invariance in the direction y parallel
to the wall, a Fourier transform in this direction allows one to reduce
Eq. (3.7) with second order partial derivatives to a one-dimensional equa-
tion with second order derivatives. Since the bulk solution ,Dbulk is a par-
ticular solution of the equation with the delta distribution, the solution of
the corresponding homogeneous equation that may be added to ,Dbulk is
entirely determined by the boundary conditions (far away from the wall
and at the interface between the fluid and the wall). The explicit solution
of Eq. (3.7) depends on which side of the wall r and r$ are. In the domain
of interest, x>0 and x$>0,

,DW (x, x$, |y| )=,Dbulk( |r&r$| )

+|
d 2k | |

2?
e&ik| | } y 1

- }2+k2
| |

- }2+k2
| | &=W |k | | |

- }2+k2
| |+=W |k | | |

_exp[&- }2+k2
| | (x1+x2)] (3.16)

Only the amplitude of the Fourier transform of ,DW&,Dbulk depends on
the electrostatic properties of the wall. As in the case of vCW&vCbulk , the
difference ,DW&,Dbulk might also be interpreted in terms of image-charge
distributions, each of which would be characterized by a wave vector,
because the Fourier transform of Eq. (3.15) restricted to the components of
r which are parallel to the wall reads

,Dbulk(x, x$, k | |)=2?
exp[&- }2+k2

| | |x&x$|]

- }2+k2
| |

(3.17)

We notice that, under the assumption that the external charge ei is of
order e, according to Eqs. (3.1), (3.10), and (3.16)

&;F (1)
elect, DW[qi]=O(1 3�2) (3.18)

Besides, the integrals of the exponential of F (1)
elect, DW [q i] and

8elect, DW[q1 , q2] with the measure D0
W (!; x) are finite, in spite of the exist-

ence of attraction between plasma charges and images inside the wall,
because the measure D0

W (!; x) smooths the corresponding short-distance
singularities. Thus, the quantum free energies F (1)

:i , DW (r1) and
F (2)

:1:2, DW (r1 , r2), defined in Eqs. (2.17) and (2.20) and calculated in the
Debye approximation, are finite.
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3.2. Algebraic Electrostatic Tails

For a dielectric or a plain wall, the small-|k | | | expansion of the
integrand of d 2k | | �(2?)2 in Eq. (3.16) contains nonanalytic terms in the
components of k | | and the singularity at lowest order in |k | | | reads

&4? |k | | |_=W
e&}(x1+x2)

}2 (3.19)

Subsequently, according to the theory of distributions (see p. 363 in ref. 15),

,DW (x1 , x2 , |y| )ty � �

2
y3 =W

e&}(x1+x2)

}2 (3.20)

We notice that Eq. (3.20) implies that the approximated charge correlation
function given by Eq. (3.3) with hcl, DW in place of hcl, W happens to obey
the exact classical sum rule (2.25). In the weak-coupling limit, according to
Eq. (3.13), F (1)

elect[qi] tends to F (1)
elect, DW [qi] where F (1)

elect, DW [qi] is derived
from Eqs. (3.10) and (3.16) and depends only on xi and !i . In the same
way, 8elect tends to 8elect, DW given by Eqs. (3.11) and (3.16) and the coef-
ficient of he corresponding 1�y3 tail (2.26) tends to felect, DW (x1 , x2 ; =W),

felect(x1 , x2 ; =W)= felect, DW (x1 , x2 ; =W)_[1+O(1 1�2)] (3.21)

According to Eqs. (2.15) and (3.20),

felect, DW (x1 , x2 ; =W)=&;e1e2

2=W

}2 |
1

0
ds1 |

1

0
ds2

_| D� DW (!1 ; x1) | D� DW (!2 ; x2)

_exp[&}(x1+*1[!1(s1)]x+x2+*2[!2(s2)]x)]
(3.22)

In Eq. (3.22) the measure in the weak coupling limit, D� DW , is defined
by Eq. (2.23) with F (1)

elect[q i] replaced by its Debye approximation (3.10).
(We notice that, according to Eq. (3.16), when =W is finite and =W{1,
F (1)

elect, DW[qi] tends to its bulk value only algebraically, as 1�x i , when xi

goes to infinity, whereas it decays exponentially fast when =W=1.)
Contrarily, in the case of an ideally conducting wall, according to

Eq. (3.17), the expression (3.16) gives

,DW (x1 , x2 , |y| )| =W=�=,Dbulk( |r1&r2 | )&,Dbulk( |r1&r2* |) (3.23)
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for x1>0 and x2>0. (The latter result might also be directly retrieved
from the image method for a potential that vanishes in the wall). Then
,DW (x1 , x2 , |y| ) decreases exponentially fast in all directions in the plasma,
in agreement with the general results recalled in Section 2.3. (We notice
that the immersion free energy F (1)

elect, DW [q i], tends to its bulk value
exponentially fast when xi goes to infinity.) According to Eq. (3.11) and
symmetry arguments,

&; | D� DW (!1 ; x1) | D� DW (!2 ; x2) 8elect, DW[q1 , q2]| =W=�

ty � � &2;}e1e2 _x1+*1 |
1

0
ds | D� DW (!1 ; x1)[!1]x (s)&

__x2+*2 |
1

0
ds | D� DW (!2 ; x2)[!2]x (s)&_

e&}y

y2 (3.24)

Eventually, no algebraic tail arises from 8elect, DW when the wall is an ideal
conductor.

4. WEAKLY-DELOCALIZED QUANTUM CHARGE IN THE
WEAK-COUPLING LIMIT

4.1. More Explicit Path-Integral Measure

In the regime where }*i<<1 the electrostatic immersion free energy
F (1)

elect, W [qi] of the distribution qi (r) with shape *i!i (s) can be expanded
around its value F (1)

cl, W (ei ; xi ) for a classical point particle whose charge ei

is equal to the total charge of the distribution qi (r). ;F (1)
cl, W (e i ; xi ) is equal

to the expression of ;F (1)
elect, W [qi] when qi (r) is replaced by ei$(r&ri ).

According to Eq. (3.13), the free energies in the weak-coupling limit are
equal to their Debye approximations up to a relative correction of order
1 1�2. Thus,

;F (1)
elect, W [qi]=;F (1)

cl, W (ei ; xi )+[;F (1)
elect, DW[q i]&;F (1)

cl, DW (ei ; x i )]

_[1+O(1 1�2)] (4.1)

According to Eq. (3.18), the Debye approximation itself is of order ;}e2=
O(1 3�2), and the scaling change k��=}u shows that the expansion of
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F (1)
elect, DW[qi] with respect to the dimensionless parameter }*i takes the

form,

;F (1)
elect, DW [q i]=;F (1)

cl, DW (ei ; xi )+1 3�2_{ :
�

n=1

(}* i )
n Cn[!i ; }xi]= (4.2)

Subsequently, according to (4.1),

;F (1)
elect, W [qi]=;F (1)

cl, W (ei ; xi )+O(1 3�2}*i ) (4.3)

Since the classical free energies do not depend on the shape !i by con-
struction of the }*i -expansion, the normalized measures D� W (!; x) and
D� DW (!; x) tend to the normalized free value D� 0

W (!; x) when }*i vanishes,

D� DW (!; x)=D� 0
W (!; x)[1+O(1 3�2(}*i ))] (4.4)

as well as

D� W (!; x)=D� 0
W (!; x)[1+O(1 3�2(}*i ))] (4.5)

with

D� 0
W (!; x)=

D0
W (!; x)

1&exp[&2(x�*)2]
(4.6)

according to (2.14).
Subsequently, some path integrals can be performed explicitly. This

is the case for the first and second moments of the free measure D� 0
W (!; x)

as well as for their integrals over the parameter s. Let us introduce the
notations

+� (1)(xi �*i )#|
1

0
ds | D� 0

W (!i ; xi )[!i (s)]x (4.7)

and

+� (2)(xi �*i )#|
1

0
ds | D� 0

W (!i ; xi )([!i (s)]x)2 (4.8)

where the dependence upon *i arises from the measure D� 0
W (! i ; xi ). For the

sake of conciseness, we set x~ #x�*. According to Appendix B,

+� (1)(x~ )=�?
2

x~ 2 Erfc(- 2 x~ )
[1&exp(&2x~ 2)]

(4.9)
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and

+� (2)(x~ )=
1
6

+
(2�3) x~ 2e&2x~ 2&- 2? x~ 3 Erfc(- 2 x~ )

[1&exp(&2x~ 2)]
(4.10)

where the complementary error function is defined as

Erfc(u)#1&
2

- ? |
u

0
dt exp[&t2] (4.11)

These expressions for +� (1)(x~ ) and +� (2)(x~ ) do tend to their respective bulk
values 0 and 1�6 when x~ goes to infinity. Besides they take their maximum
values at the origin: +� (1)(x~ =0)=- ?�(2 - 2) and +� (2)(x~ =0)=1�2.

Eventually, we get explicit formulas for the 1�y3 tails in the double
expansion 1<<1 and }*i<<1. According to (4.5), the purely quantum
term reads f|= f *|[1+O(1 3�2}* i )], where f *| is given by (2.29) with
D� 0

W (!; x) in place of D� W (!; x). The result is

f *|(x1 , x2 ; =W)=&;e1e2

2=W

1+=W
*1*2A*(x~ 1 , x~ 2) (4.12)

with A*(x~ 1 , x~ 2)=a(x~ 1 ; x~ 2)+a(x~ 2 ; x~ 1) and

a(x~ 1 ; x~ 2)={Erfc(- 2 x~ 1) _\1
6

+�?
2

x~ 1+
2
3

x~ 2
1+ e&2x~ 22&

?
4

x~ 1x~ 2 Erfc(- 2 x~ 2)&
&

1
3

e&2(x~ 2
1+x~ 22) \�2

?
x~ 1+1+

+�2
?

x~ 1 |
�

1
du

- u2&1
u

e&2x~ 21u2
Erfc(- 2 x~ 2u)

&
1
3 �

2
?

x~ 1 e&2(x~ 21+x~ 22) |
�

0
du

u3

(u2+1)3�2 e&2x~ 2
1u2

Erfc(- 2 x~ 2u)=
_x~ 1x~ 2

1
[1&exp(&2x~ 2

1)][1&exp(&2x~ 2
2)]

(4.13)

We notice that f *|(x1 , x2 ; =W) is independent from the density. This
property is linked to the fact that |:1:2

measures the difference between the
electrostatic potential and the potential given by the Feynman�Kac for-
mula (2.11) even in the absence of classical plasma and f *| is a zero-density
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limit in the sense that *i<<!B . The small-x~ 1 expansion of A*(x~ 1 , x~ 2)
involves only even powers of x~ 1 . When both x~ 1 and x~ 2 tend to zero,
A*(x~ 1 , x~ 2) tends to a finite constant. For a fixed x~ 2

A*(x~ 1 , x~ 2)tx~ 1 � �
1
12x~ 1 e&2x~ 1

2
x~ 2 :(x~ 2) (4.14)

where :(x~ 2)texp(&2x~ 2
2) when x~ 2 is also sent to infinity, while x~ 2:(x~ 2)

remains finite if x~ 2 vanishes.

4.2. More Restricted Regime

According to Eq. (3.21), the tail felect is calculated only at the leading
order in 1, where it is equal to felect, DW , with a relative correction of order
1 1�2. Moreover, according to (4.4), the }*i -expansions of felect, DW derived
from Eq. (3.22) must be made up to an order lower than 1 3�2}*i (for
i=1, 2) which is the order of the relative correction that is neglected in the
expression (4.4) of D� DW . Under the extra assumption that 1 1�2<<
(}*i )

2<<1, which implies that 1 3�2<<}*i , the }*i -expansions of felect, DW

up to the second order included give the expansion of the exact value of
felect up to a term o(}2*2

i ) of order higher than }2*2
i ,

felect= f *elect, DW[1+o(}2*2
i )] (4.15)

The three conditions 1<<1, }*i<<1 and 1 1�2<<(}*i )
2 correspond to the

hierarchy of length scales

a
!B

<<\ * i

!B+
2

<<1 (4.16)

This implies that a<<*i<<!B . In (4.15)

f *elect, DW (x1 , x2 ; =W)= fcl, DW(x1 , x2 ; =W)+ f *diff, DW (x1 , x2 ; =W) (4.17)

fcl, DW �y3, which coincides with the value (3.22) of felect, DW�y3 when *i=0,
is just the classical 1�y3 tail in the Debye approximation,

fcl, DW (x1 , x2 ; =W)=&;e1e2

2=W

}2 e&}(x1+x2) (4.18)

The so-called diffraction correction f *diff, DW coincides with the sum of the
first two terms in the }*i -expansion of Eq. (3.22) when D� DW (!; x) is
replaced by D� 0

W (!; x),
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f *diff, DW (x1 , x2 ; =W)

= fcl, DW (x1 , x2 ; =W)

_{&}*1 +� (1)(x~ 1)&}*2+� (1)(x~ 2) (4.19a)

+}2 _*2
1

2
+� (2)(x~ 1)+*1 *2 +� (1)(x~ 1) +� (1)(x~ 2)+

*2
2

2
+� (2)(x~ 2)&= (4.19b)

The signs of these corrections depend on the order in }*i .

4.3. Comparison of the Tails from Various Origins

In order to compare the amplitudes of the various tails, we consider
their values for *1=*2#* and for x1=x2=x. Let us denote the maximum
value of fcl, DW by maxcl, DW#&;e1e22=W �}2. For any finite value of =W ,
we consider the ratios

f *elect, DW (x, x; =W)
maxcl, DW

=e&2}x[1&2}*+� (1)(x~ )+(}*2)[+� (2)(x~ )+(+� (1)(x~ ))2]] (4.20)

and

f *|(x, x; =W)
maxcl, DW

=(}*)2 1
1+=W

A*(x~ , x~ ) (4.21)

where the expressions in (4.20) and (4.21) are derived from (4.12) and
(4.17). At the considered order in our double expansion with respect to 1
and }* with 1 1�2<<(}*)2, the ratio (4.21) depends only on }* (and not on 1 ).

Since }*<<1, the total coefficient f *(x, x; =W)=f *elect, DW (x, x; =W)+
f *|(x, x; =W) nearly coincides with its classical value fcl, DW (x, x; =W) at
distances larger than a few de Broglie wavelengths * and it falls of exponen-
tially fast over the distance !B=1�}. All quantum corrections are concen-
trated near the wall over a range of order *<<!B , as shown in Fig. 1,
where }*=0.1 is yet not so small.

The first-order correction in � arises only from the diffraction correc-
tion to the classical coefficient. It lowers the value of f *(x, x; =W) near the
wall. This diffraction correction, of order }*, arises from the nonvanishing
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Fig. 1. The profile of the global coefficient f *(x, x; =W)�maxcl, WD of the 1�y3 tail of the
correlation between the two quantum particles in the case x1=x2=x and in the regime (4.16)
for }*=0.1 and any finite value of =W . The slope at the origin does not vanish, contrarily to
what might be inferred from the figure at the chosen scales.

value of the first moment of ! and tends to zero in the bulk where rota-
tional symmetry is restored, as it can be checked by inspection of Eqs.
(4.20) and (4.9). On the contrary, the diffraction correction of relative
order (}*)2 involves the second moment of !, which does not vanish far
away from the wall. Thus, at large distances, the (}*)2-term in f *diff, DW

tends to (}*)2�6 times fcl, DW .
The purely quantum tail f *|(x, x; =W) is completely negligible when =W

is finite for two reasons. First f *|(x, x; =W) is of relative order (}*)2 with
respect to the classical tail. Second, its amplitude is 102 times smaller than
that of the diffraction correction at the same order in �. In Fig. 2 a
logarithmic scale is used to display all contributions on the same graph.
However, when =W=�, only the quantum tail f *|(x, x; =W) exists. The
corresponding coefficient A*(x~ , x~ ) is shown in Fig. 3.

5. TOWARDS THE DESCRIPTION OF THE QUANTUM SYSTEM

For the sake of simplicity, we still consider a One-Component Plasma
in the following. The model of two quantum charges embedded in a classi-
cal OCP in the vicinity of an ideal conductor is expected to mimic the
behavior of correlations in a fully quantum but rather weakly degenerate
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Fig. 2. Absolute values of various terms in the �-expansion of f *. The solid line is the classi-
cal term, fcl, DW . The dotted line is the � term given by Eq. (4.19a), which is a purely diffrac-
tion term. The dash-dot line is the contribution (4.19b) at order �2 from diffraction effects,
while the dashed line corresponds to the purely quantum term (4.21) at the same order.

Fig. 3. Universal coefficient A*(x~ , x~ ) in the purely quantum 1�y3 tail (4.21). Only this part
of the tail survives in the case of an ideally conductive wall.
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OCP, where the de Broglie wavelength * is equal to the one of the external
charges in the model and the Debye length is !=!B , with !B defined after
Eq. (3.1). The two conditions a<<! and *<<! used to obtain explicit
expressions when =W=� are compatible with the low-degeneracy condi-
tion *<<a. The inequality a<<! assumed in Section 3 only implies that
the Coulomb coupling is weak, in which case the condition *<<! used in
Section 4 is sufficient to obtain an explicit expression for the purely quan-
tum part of the 1�y3 tail. [We notice that the condition *<<! does not
necessarily enforce the semiclassical condition in the weak-coupling regime,
*<<1a (see Section VI B of ref. 16 for more details).] On the contrary, in
the case of a plain or dielectric wall, the explicit expressions of the 1�y3 tail
in Section 4.2 are obtained only in the regime a<<*i<<!B , which is not a
weakly-degenerate situation. Subsequently, in the following, we will restrict
our study to a OCP in the vicinity of an ideal conductor in the weak-
coupling and low-degeneracy limit (1.13).

When exchange effect are negligible, and according to the formalism of
ref. 17, the quantum truncated two-body distribution function

\(2) T (r, r$)#�:
i

$(ri&r) :
j{i

$(rj&r$)�&\(r) \(r$) (5.1)

where ( } } } ) denotes the statistical ensemble average, may be obtained
from the density \W (x, !) and the Ursell function hW(x, x$, y; !, !$) in a
classical gas of closed filaments with random Brownian shapes *! and
which interact via the two-body potential given by the Feynman�Kac
formula. The relation reads(17)

\(2) T (r, r$)=| D0
W (!; x) | D0

W (!$; x$) \W (x, !) \W (x$, !$)

_hW (x, x$, y; !, !$) (5.2)

According to its definition \W (x, !)#(� i $(ri&r) $(! i&!)) , the density
\W (x, !) near the wall is related to its bulk value \bulk(!) through

\W (x, !)=\bulk(!) e&;(Felect, W [q]&Felect, bulk[q]) (5.3)

where Felect, W[q](Felect, bulk[q]) is the classical immersion free energy of the
filament defined by a formula analogous to Eq. (2.18) where ( } } } )U0

is
replaced by a Maxwell�Boltzmann average for the gas of filaments.
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In the low-density regime (1.13), where a weak-coupling restriction is
added to the low-degeneracy condition, according to the analysis of ref. 16,

\bulk(!)=\_[1+`O(\)'] (5.4)

where \ is the quantum density of bulk particles and `O(\)' is a term of
order \ which comes from various effects. More precisely, these are
coupling corrections of order 1 3, diffraction effects of order 1 (*�a)2 and
exchange contributions of order (*�a)3. All these terms are indeed negligible
with respect to 1.On the other hand, under the weak-coupling hypothesis,
the electrostatic immersion free energies are given by their Debye approxi-
mations which are of order 1 3�2�;, as in Eq. (3.18). An extra expansion can
be performed because the condition *<<!=1�} is fulfilled according to
Eq. (1.13). Then

e&;(Felect, W[q]&Felect, bulk[q])=[1+O(1 3�2f (}x))][1+O(1 3�2}*F(}x, !))]

(5.5)

where O(1 3�2f (}x)) comes from coupling corrections in the classical
expression Fcl, W (e)&Fcl, bulk(e) while O(1 3�2(}*) F(}x, !)), which is of
order 1 2(*�a), originates from quantum corrections to the previous classi-
cal coupling terms. Combination of Eqs. (5.3), (5.4), and (5.5) shows that,
at leading order in 1,

\W (x, !)t1<<1 \ (5.6)

In the regime (1.13), a phenomenological correlation \ (2) T
phen(x, x$, y)

may be built as follows: one replaces the large-distance behavior of hW

in Eq. (5.2) by &; times the limit of the effective interaction
8ext(x, x$, y; !, !$) between two external classical filaments embedded in a
classical plasma. The effective interaction is defined by a generalization of
Eq. (2.7) and the limit is calculated in the regime *<<a<<!B and by
replacing !B by !. We recall that, since we have been able to calculate the
expression in this limiting case only for an ideally conducting wall, we will
restrict our phenomenological model to =W=�. Then the 1�y3 tail
originates only from the purely quantum part | in the immersion free
energy of two filaments written in the last line of Eq. (2.20). According to
Eqs. (5.2) and (5.6),

\ (2) T
phen(x, x$, y)t|y| � � &;\2 | D0

W (!; x) | D0
W (!$; x$) |(x, x$, y; !, !$)

(5.7)
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The definition (4.7) of +� (1) and the relation (4.6) between D0
W and the

corresponding normalized measure D� 0
W allow to write the 1�y3 tail of

Eq. (5.7) as

\ (2) T
phen(x, x$, y)t|y| � � \2[1&e&2x2�*2

][1&e&2x$2�*2
]

f *|(x, x$; =W=�)
y3

(5.8)

where f *|(x, x$; =W=�) is given in Eq. (4.12).
Anyway, even in the low-density limit, the exact amplitude

fqu(x, x$, =W) for the quantum many-body problem likely involves not only
the direct interaction between the quantum particles at x and x$, but also
quantum interactions involving one or two other charges in the plasma.
Since the model of two external quantum charges in a bath where all par-
ticles are classical cannot incorporate the latter coupling effects involving
more than two quantum charges, an exact many-body calculation is
required. This remark is supported by a comparison already made for bulk
correlations derived either from the solvable model or from an exact
calculation for the many-body problem in the low-density limit (1.13).(7)

For instance, at the first order in density, the coefficient of the exact 1�r6

tail in the bulk contains corrections to the value predicted by the solvable
model: the effective interaction is not only a direct effect but it is partially
conveyed by one or two intermediate charges which are classically screened
from one of the particles at x or x$. (However, the root of the 1�r6 tail is
the same in both calculations.) In the presence of a uniform magnetic field,
the leading 1�r5 tail derived from the model happens to coincide with the
exact result, but this coincidence originates from compensations involving
indirect interactions and seems to arise from the purely quantum-statistical
origin of magnetic effects.

6. CONCLUSION

The model exhibits the following relation between the large-distance
behaviors of correlations and the structure of polarization clouds. At classi-
cal thermal equilibrium, the static bulk distribution functions (with some
proper truncations) decrease faster than any inverse power of the relative
distances when the latter become large.(1) The so-called exponential cluster-
ing means that the average configurations of the particles in the plasma are
such that all the multipoles of a set of particles plus its surrounding polariza-
tion cloud vanish.(5, 18) However, in the vicinity of a wall, this ``perfect''
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screening is partially canceled by an electrostatic-geometric effect: the defor-
mation of the polarization cloud. This deformation with respect to the
``perfect'' arrangement generates a nonvanishing mean dipole between a
particle and its polarization cloud in the direction perpendicular to the
wall, though the corresponding total mean charge still vanishes. When the
wall is a plain wall the effect is purely geometric, whereas some surface
polarization charge appears inside walls with electrical properties. The
resulting effective dipole-dipole interaction is reflected in the algebraic 1�y3

fall-off of the position-position correlation in the direction parallel to the
wall when the latter is a plain wall or a dielectric one.(13) However, in the
vicinity of an ideally conductive boundary, the cloud generated by the
influence phenomenon inside the conductive wall fits with the polarization
cloud created by the plasma charges so perfectly that the effective interac-
tion between the plasma particles decreases faster than any inverse power-
law (as in the bulk).

Contrarily, in quantum regimes, screening is always algebraic, even in
the bulk, because intrinsic quantum position fluctuations destroy the per-
fect arrangement of classical average configurations. In the bulk, rotational
invariance and the harmonicity of the Coulomb potential specific to the
definition (1.1) enforce a 1�r6 tail (in some sense, only the squared fluctua-
tions of dipole�dipole interactions survive).(4, 19) On the other hand, in the
vicinity of a wall the previous geometrical effect arises again and (non-
squared) 1�y3 dipolar interactions survive after averaging over microscopic
configurations with quantum fluctuations, even in the vicinity of an ideally
conducting wall.

APPENDIX A

In this appendix we derive the expressions (3.9)�(3.10) and (3.11) for
the immersion free energies in the classical weak-coupling limit. These
values are derived from the expansion of the definitions (2.18) and (2.21)
with respect to ;qi up to second order. The expansion is combined with a
self-consistent mean-field approximation for the correlations in the classical
plasma in the absence of the external charge distributions qi (r).

For any potential v(r, r$) the linear and quadratic terms in the expan-
sion of F (1)

elect[qi] with respect to qi (r) read

F (1)
elect[qi]=| dr | dr$ qi (r) v(r, r$)(Q(r$)) UO

+ 1
2 | dr | dr$ qi (r) v(r, r$) Qind(r$; qi ) (A1)
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In Eq. (A1) the expression of the charge density Qind(r$; qi ) induced by
qi (r) is that given by the linear response theory,

Qind(r$; qi )=&;[(Q(r$) V[qi]) U0
&(Q(r$)) U0

(V[qi])U0
]

=&; | dr* | dr"[(Q(r$) Q(r*)) U0
&(Q(r$)) U0

(Q(r*)) U0
]

_v(r*, r") qi (r") (A2)

A similar scheme leads to

8elect[q1 , q2]+| dr | dr$ q1(r) v(r, r$) q2(r$)

= 1
2 | dr | dr$[q1(r) Qind(r$; q2)+q2(r$) Qind(r; q1)] v(r, r$) (A3)

In the self-consistent meanfield approximation, the basic assumption
has been formulated in Sec. 3.1 in terms of the total potential ,W created
by a charge and its polarization cloud. (It is equivalent to approximate the
exact direct correlation function by &;e2v(r, r$), as mentioned in ref. 13.)
,MFW is the solution of the integral Eq. (3.6). Comparison of Eq. (A2) with
Eqs. (3.3), (3.5), and (3.6) shows that

Q ind
MF (r$)=&;e2\(x$) | dr" ,MFW (r$, r") qi (r") (A4)

In the case of the Coulomb potential, the second term in Eq. (A1) can
be simplified by insertion of the meanfield expression (A4) and use of a
symmetry property. Indeed, by definition ,MFW (r, r$) is real while, accord-
ing to the equations (3.7) and

=W2r$ ,MFW (r, r$)=&4?$(r&r$) for x$<0 (A5)

together with the boundary conditions, ,MFW (r, r$) is also the Green func-
tion of a self-adjoint operator acting on r$. Thus ,MFW (r, r$) is a symmetric
function of its arguments, as well as vC(r,r'),

,MFW (r, r$)=,MFW (r$, r) (A6)
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Therefore

| dr$ \(x$) vCW (r, r$) ,MFW (r$, r")

=| dr$ \(x$) ,MFW (r", r$) vCW (r$, r) (A7)

and by using again Eq. (3.6) together with Eq. (A4), we obtain

| dr | dr$ qi (r) v(r, r$) Q ind
MF (r$; qi )

=| dr | dr" q i(r)[,MFW (r, r")&vCW (r, r")] qi (r") (A8)

Similarly, the combination of the latter equation with Eq. (A3) leads to the
value (3.11) for the effective electrostatic interaction between two charge
distributions.

APPENDIX B

In this appendix, we calculate the first and second moments of a
Brownian bridge in the vicinity of a wall. In fact the value of +� (1)(x~ ) can
be directly inferred from Eq. (2.15) of ref. 20. Two properties are used.

First, the link between the path integral and the Heisenberg represen-
tation in imaginary time reads

1
(2?*2)1�2 | D0

W ([!]x ; x1) *[!(s)]x#(x1| e&;[h� 0+UW (x̂)][x̂(s)&x1] |x1)
(B1)

where h� 0 is defined in Eq. (2.13). In Eq. (B1) x̂(s) is an operator in Heisenberg
representation

x̂(s)#e;s[h� 0+UW (x̂)]x̂e&;s[h� 0+UW (x̂)] (B2)

By inserting the closure relation, we get

(x1| e&;[h� 0+UW (x̂)][x̂(s)&x1] |x1)

=&x1 g0, W (x1 , x1 , 1)+|
+�

0
dx$ g0, W (x1 , x$, 1&s) x$g0, W (x$, x1 , s)

(B3)
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Second, g0, W (x$, x1 , s) is merely given by the image method.(20)

Indeed, we look for a function that obeys the same equation as the bulk
solution with the only difference that it vanishes on the wall and it is set
equal to zero inside the wall as soon as x or x$ becomes negative. The func-
tion which obeys the last property and which reads

g0, W (x, x$; s)= g0, bulk(x&x$; s)& g0, bulk(x+x$; s) (B4)

for x>0 and x$>0 clearly satisfies all requirements. In Eq. (B4), the bulk
solution reads

g0, bulk(x&x$; s)=
1

(2?*2)1�2

exp[&|x&x$|2�(2*2s)]

- s
(B5)

By combination of Eqs. (B1) and (B3) with Eq. (B4) and by using the
definition of the complementary error function recalled in Eq. (4.11), we
get

| D0
W ([!]x ; x1)[!(s)]x =x~ 1 _2se&2x~ 21&Erfc \ 1

- 2s(1&s)
x~ 1+

+(1&2s) e&2x~ 21 Erfc \ 1&2s

- 2s(1&s)
x~ 1+& (B6)

where x~ #x�*. The integrals over s involved in the definitions of +� (1) and
+� (2) are performed by means of an integration by parts (in order to
eliminate the functions Erfc). Then the changes of variables u=
1�- 2s(1&s) for 0�s�1�2 and next v2=u2&2 are used. The final result
is obtained from the representation

Erfc(xy)=
2x
?

e&x2y2 |
�

0
dt

e&t2y2

t2+x2 (B7)

which is valid when the real part of y2 is strictly positive. Eventually, the
value (4.9) of +� (1)(x~ ) is derived from (B6) and the normalization given in
Eq. (4.6).

The same scheme is used for calculating � D0
W ([!]x ; x1)[!(s)]2

x . The
latter moment and the first one appear in the path integral representation
of the matrix element

- 2?
*

(x1| e&;[h� 0+UW (x̂)][x̂(s)]2 |x1) (B8)
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According to the value (B4) of the free propagator, the matrix element is
readily computed with the result

x~ 2
1[1&e&2x~ 1

2
(2s&1)2]+s(1&s)(1&e&2x~ 1

2
) (B9)

The value (4.10) of +� (2)(x~ ) is derived from (B9) in a straightforward way.
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